-
-
-
- Challenges and Chances: A Review of the 1st Stem Cell Community Day
- Summertime, and the Livin’ Is Easy…
- Follow-on-Biologics – More than Simple Generics
- Bacteria Versus Body Cells: A 1:1 Tie
- Behind the Crime Scene: How Biological Traces Can Help to Convict Offenders
- Every 3 Seconds Someone in the World Is Affected by Alzheimer's
- HIV – It’s Still Not Under Control…
- How Many Will Be Convicted This Time?
- Malaria – the Battle is Not Lost
- Physicians on Standby: The Annual Flu Season Can Be Serious
- At the Forefront in Fighting Cancer
- Molecular Motors: Think Small and yet Smaller Again…
- Liquid Biopsy: Novel Methods May Ease Cancer Detection and Therapy
- They Are Invisible, Sneaky and Disgusting – But Today It’s Their Special Day!
- How Many Cells Are in Your Body? Probably More Than You Think!
- What You Need to Know about Antibiotic Resistance – Findings, Facts and Good Intentions
- Why Do Old Men Have Big Ears?
- The Condemned Live Longer: A Potential Paradigm Shift in Genetics
- From Research to Commerce
- Chronobiology – How the Cold Seasons Influence Our Biorhythms
- Taskforce Microbots: Targeted Treatment from Inside the Body
- Eyes on Cancer Therapy
-
-
-
-
-
- Challenges and Chances: A Review of the 1st Stem Cell Community Day
- Summertime, and the Livin’ Is Easy…
- Follow-on-Biologics – More than Simple Generics
- Bacteria Versus Body Cells: A 1:1 Tie
- Behind the Crime Scene: How Biological Traces Can Help to Convict Offenders
- Every 3 Seconds Someone in the World Is Affected by Alzheimer's
- HIV – It’s Still Not Under Control…
- How Many Will Be Convicted This Time?
- Malaria – the Battle is Not Lost
- Physicians on Standby: The Annual Flu Season Can Be Serious
- At the Forefront in Fighting Cancer
- Molecular Motors: Think Small and yet Smaller Again…
- Liquid Biopsy: Novel Methods May Ease Cancer Detection and Therapy
- They Are Invisible, Sneaky and Disgusting – But Today It’s Their Special Day!
- How Many Cells Are in Your Body? Probably More Than You Think!
- What You Need to Know about Antibiotic Resistance – Findings, Facts and Good Intentions
- Why Do Old Men Have Big Ears?
- The Condemned Live Longer: A Potential Paradigm Shift in Genetics
- From Research to Commerce
- Chronobiology – How the Cold Seasons Influence Our Biorhythms
- Taskforce Microbots: Targeted Treatment from Inside the Body
- Eyes on Cancer Therapy
-
-
Bioprocess Optimization
Improve reproducibility
Improve yield
Reducing batch variability and improving yield
もっと読む
表示を減らす
How can bioprocess reproducibility be improved?
もっと読む
表示を減らす
Fine control of process conditions
Fine-tuning the control of your bioprocess is critical to ensure quality, yield, and batch consistency of the product produced. You can automatically gain information about your process by implementing Process Analytical Technology (PAT). PAT can provide real-time monitoring of critical process parameters (CPPs), such as pH, DO, temperature, cell density, cell viability, nutrient concentrations, by-product concentrations, and help to keep these within a defined range. When incorporated into bioreactor control systems, PAT can be used to acquire data in real-time and use it to leverage feedback loops, for automated, in-process parameter control. For example, it is possible to automate culture feeding based upon the glucose concentration in the medium. By automating bioprocess control, stress on the cells can be reduced significantly, and form a sound foundation for optimal performance.
Robust calibration of sensors
もっと読む
表示を減らす
Interested in how to increase the reproducibility of cell culture bioprocesses? Check out our e-book .
Ensuring consistent cell quality in bioreactor culture
- Monitor cell growth in your shake flask culture – Take note of your flask culture data, including cell density and metabolites. Creating a growth curve can be an effective way to see if your culture is on track.
- Optimize your passage schedule – Ensure that you split your cells at the optimal time point in their growth phase. Too frequent passaging can hinder cell density, while too infrequent will cause metabolite build up and affect viability.
- Keep your flask in optimum conditions – Ensure that flasks are kept in an incubator with optimized temperature, plus CO2, oxygen, and moisture levels. Make sure that flasks spend minimal time outside the incubator for monitoring/passage.
- Keep track of pH levels – Try and keep the pH level in the flask and in the bioreactor medium at a standard level to avoid pH shock. In-flask pH monitoring systems is useful for this.
もっと読む
表示を減らす
Want to learn more about inoculum optimization in a cell culture scale-up workflow? Check out our application note.
How can bioprocess yield and productivity be improved?
もっと読む
表示を減らす
Choose the best process mode for you
もっと読む
表示を減らす
Solutions for bioprocess optimization
もっと読む
表示を減らす
Eppendorf has a range of bioprocess control solutions to help you with optimizing your process, including but not limited to:
- DASbox® Mini Bioreactor System : Designed for small working volumes and parallel experimentation, it can boost your bioprocessing research and early process development.
- DASware® control bioprocess control software : Enables bioprocess monitoring and control and the integration of analytical devices to your bioreactor system. Along with the DASware® software suite, this is a valuable tool for experimental design.